О точности измерений

Тема в разделе "Общие вопросы", создана пользователем Фёдор Ерёмин, 6 мар 2018.

?

Можно ли 5сек тахеометром померить угол с точностью 1сек?

  1. да

    27 голосов
    48,2%
  2. нет

    29 голосов
    51,8%
  1. Артем Скурихин

    Артем Скурихин Форумчанин

    Это действенный прием для устаревших лимбов теодолитов, а вот в секундных электронных тахеометрах производителем дополнительно на электронный лимб устанавливается еще одно отсчетное электронное устройство. В "пятисекундниках" такое устройство одно, а в "секундниках" - два..
     
  2. wolodya

    wolodya Форумчанин

    Да и в теодолитах так же было.
    Эксцентрисетет уменьшается.
     
    -=13=- нравится это.
  3. Фёдор Ерёмин

    Фёдор Ерёмин Форумчанин

    Вы это к чему? Я вам об СКП. О том как оно определяется.
    При многократных измерениях погрешность измерения от случайных ошибок уменьшается
     
  4. Артем Скурихин

    Артем Скурихин Форумчанин

    При многократных равноточных измерениях математическое ожидание измеряемого угла стремится к истинному его значению. А дисперсия при этом стремится к паспортному показателю. Дисперсия - это среднеквадратической отклонение случайного текущего измерения от среднего измерения из множества таких измерений...
    Что Вы понимаете под СКП, позвольте узнать?
     
    Vintik нравится это.
  5. Фёдор Ерёмин

    Фёдор Ерёмин Форумчанин

    СКП -средняя квадратическая погрешность, то же что и СКО.
    --- Сообщения объединены, 7 мар 2018, Оригинальное время сообщения: 7 мар 2018 ---
    В паспорте на теодолит (тахеометр) указывается дисперсия???
     
  6. Артем Скурихин

    Артем Скурихин Форумчанин

    Тут есть некоторое разночтение в понятиях, разобраться в них на пользу будет всем (я пока не голосовал)...
    Природа ошибок измерений различна. Виной тому в т.ч. физические свойства конструктивного элемента. Очень хорошо, что имеется возможность противопоставить односекундный тахеометр пятисекундному. Это редкий случай найти удачный пример для устранения (игнорирования) прочих других факторов снижения точности.
    Форумчане-старожилы помнят подобное же разочарование навигаторами, которые можно было бы, по-идее, многократным снятием отсчета к "истинным значениям координат" подвести...

    ЗЫ. Среднеквадратическое отклонение равно квадратному корню из дисперсии
     
  7. ЮС

    ЮС Форумчанин

    Можно 5" прибором измерить угол с точностью в 1"... или нельзя..? Это вам не самолёт - взлетит, не взлетит. Всё легко проверить.
    Я уже приводил
    http://geodesist.ru/threads/sravnen...-credo-ehksperiment.67988/page-10#post-779949
    вот такую табличку:
    QIP Shot - Screen 2135.jpg
    В той же теме есть и сам файл с измерениями (gsi).
    Итого, по результатам оценки измерений одного угла двенадцатью приёмами, СКО угла одним приёмом получается порядка 1.7".
    Тогда вероятная ошибка среднего значения из 12-и приёмов будет = 1.7/√12 = 0.5".
    Чтобы в этом убедиться, надо тот же угол ещё раз измерить 12-ю приёмами, вычислить среднее значение и сравнить его с с первым средним результатом.
    Кому интересно, могут легко провести свой эксперимент и определиться с точностью измерений именно своего прибора.
     
    GeoTop, AlexeyNSK, -=13=- и 3 другим нравится это.
  8. Артем Скурихин

    Артем Скурихин Форумчанин

    Видишь ли в чем нюанс: смещение через 15 градусов ничего не дает в этом случае. У теодолитов лимб принудительно перемещался относительно алидады и микроскопа... Физически вокруг оси взаимного вращения... Переназначение параметра "Нач.установка" на том же электронном лимбе тахеометра не дает такой возможности...
     
  9. ЮС

    ЮС Форумчанин

    Не надо меня за дурака держать. Всё делается элементарно - поворотом всего прибора на штативе. Для обеспечения принудительного центрирования есть несколько способов. И об этом на форуме говорилось уже не один раз.
     
    -=13=- и BorisUK нравится это.
  10. Артем Скурихин

    Артем Скурихин Форумчанин

    Вам повезло с инструментом (экземпляр попался удачным)....Завидую...
     
  11. wolodya

    wolodya Форумчанин

    Вот если бы вы секундником померили этот угол, а потом 407 тогда точность была бы получена более достоверно. А по уклонениям от среднего надо
    еще считать ошибку определения СКО. Какая не маленькая.
    --- Сообщения объединены, 7 мар 2018, Оригинальное время сообщения: 7 мар 2018 ---
    Лейки обычно имеют точность выше заявленной.
     
    Дядя Вова нравится это.
  12. GeoTop25

    GeoTop25 Форумчанин

    Всё гораздо проще: поворачивается трегер на головке штатива на примерно заданные углы. При достаточно удалённых целях погрешностью центрирования можно пренебречь. Да и если ловятся секунды угла, то центрир должен быть поверен до долей миллиметра.
    А вообще то совершенно согласен с "При многократных равноточных измерениях математическое ожидание измеряемого угла стремится к истинному его значению. А дисперсия при этом стремится к паспортному показателю. Дисперсия - это среднеквадратической отклонение случайного текущего измерения от среднего измерения из множества таких измерений..."
     
    Daulet Alimbetov нравится это.
  13. ЮС

    ЮС Форумчанин

    Не стоит, я работал ещё с с несколькими экземплярами лейки 5", все они дают точность порядка 2" (полным приёмом).
    А кто этого не даёт сделать? Пожалуйста, вычисляйте.
     
  14. wolodya

    wolodya Форумчанин

    Как раз формулы ищу. Давно этим не занимался.
     
  15. Evgenypet

    Evgenypet Только чтение

    а, на х..., извините, зачем?
    Есть приборы высокоточные, они с большим увеличением трубы. Зачем десятки приемов крутить, это же не целесообразно. Да и потом секундные измерения углов выполняют в сетях где более отдаленные цели. Смысл секунды ловить на близких расстояниях?
    Не эффективно на машине с мощностью 100л.с выжимать все соки и напротив на спорт каре тошнить 60км/ч.
     
  16. Фёдор Ерёмин

    Фёдор Ерёмин Форумчанин

    Практическое применение? Например: выбор геодезического оборудования пр условии ограниченности денежных средств и единичными более высоко-точными работами, чем основные работы.
    Кроме этого хочется погрузиться глубже в эту тему.
    Услышать мнение форума.
    Пока формулами не было здесь доказано, что невозможно достичь.
     
    BorisUK нравится это.
  17. Артем Скурихин

    Артем Скурихин Форумчанин

    Ну, я увидел качественную сборку экземпляра тахеометра, СКО которого удалось подтвердить до двух секунд при измерении каждого угла двенадцатью полными приемами.
    Теперь постановка вопроса такая: можно ли удвоив количество таких приемов до (почти) двадцати пяти, получить СКО "одна секунда"?
    Это ведь устранит эксцентриситет лимба в полной мере (360/15=24)? А 48 приемов - два круга? А 12 приемов через 30 градусов? А что будет, если измеряемый угол меньше, чем сектор приема (14 градусов)?
     
  18. Evgenypet

    Evgenypet Только чтение

    Ну если так, то можно острозаточенной стамеской болты откручивать или орехи колоть прибором, не в обиду.
    На единичные работы, логичней взять прибор в аренду или купить бу. Все методики давно разработаны и просчитаны.
    Конечным критерием измерений является точность положения определяемой точки (пункта). По предварительной оценки точности сети, ее геометрии, можно смоделировать сеть под свой парк приборов.
    Не надо привязываться к секундам угловых измерений, может достаточно в сети добавить линейные измерения. Все от задач зависит.
    Именно так, сможете обосновать выбранные приборы и методику.
     
  19. wolodya

    wolodya Форумчанин

    Если брать СКО среднего арифметического не зная точного значения угла то по формуле М=м/корень из n. получаем при m = 1.7 сек и количестве измерений 12
    то получаем СКО среднего арифметического где то 0.5 сек. Без учета систематической составляющей.
     
  20. Артем Скурихин

    Артем Скурихин Форумчанин

    Сомнительная формула какая-то... Условия её применения, вернее..
    ЗЫ. Пока полный круг лимба не просчитаем (случайность сектора) - эксцентриситет не устранится
     
    igor kruchkovskiy нравится это.
  1. Этот сайт использует файлы cookie. Продолжая пользоваться данным сайтом, Вы соглашаетесь на использование нами Ваших файлов cookie.
    Скрыть объявление
  1. Этот сайт использует файлы cookie. Продолжая пользоваться данным сайтом, Вы соглашаетесь на использование нами Ваших файлов cookie.
    Скрыть объявление